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Rotation strongly affects the stability of turbulent flows in the presence of large eddies. 
In this paper, we examine the applicability of the classic Bradshaw-Richardson 
criterion to flows more general than a simple combination of rotation and pure 
shear. Two approaches are used. Firstly the linearized theory is applied to a class 
of rotating two-dimensional flows having arbitrary rates of strain and vorticity and 
streamfunctions that are quadratic. This class includes simple shear and elliptic 
flows as special cases. Secondly, we describe a large-eddy simulation of initially 
quasi-homogeneous three-dimensional turbulence superimposed on a periodic array 
of two-dimensional Taylor-Green vortices in a rotating frame. 

The results of both approaches indicate that, for a large structure of vorticity 
W and subject to rotation Q,  maximum destabilization is obtained for zero tilting 
vorriciry (4  W + 2Q = 0) whereas stability occurs for zero absolute vorticity ( W + 
2l2 = 0). These results are consistent with the Bradshaw-Richardson criterion; 
however the numerical results show that in other cases the Bradshaw-Richardson 
number 

B = 252( W + 252)/W2 
is not always a good indicator of the flow stability. 

1. Introduction 
Rotating turbulent flows occur in fields as diverse as engineering (e.g. turboma- 

chinery, reciprocating engines with swirl and tumble), geophysics and astrophysics. 
Studies of such flows have shown complex coupling between Coriolis forces, pressure 
and strain. Rotation is also an important factor in certain mechanisms of flows 
instability, such as the well-known elliptical flow instability, and strongly affects non- 
linear interactions. Effects of curvature and advection by large eddies can often be 
considered as similar to those of rotation and analysed in the same way. 

The aim of this paper is to study the combined effects of large-scale structures and 
rotatiori using simple modelling to elucidate the stability of such flows. 

A number of recent studies in this area were presented at a Euromech colloquium, 
henceforth referred to as E288 (see Cambon 1994). In particular, the behaviour 
of two-dimensional eddies imbedded in three-dimensional turbulence and subject 
to three-dimensional instabilities was described. The approaches reported included 
stability theory, direct numerical simulation and experimental measurements. 
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A striking conclusion of all approaches is that turbulent production is greater in 
regions of the flow where there is large-scale vorticity and strain than where there 
is strain alone. Futhermore, in regions of flow convergence, large dissipation and 
nonlinearity can become comparable to and even dominate turbulent production due 
to vortex stretching by the background flow. Three-dimensional secondary instabilities 
due to rotation, such as the elliptical flow instability, can eventually generate more 
turbulent energy than classical two-dimensional instabilities, such as the inflexional 
one (Kelvin-Helmholtz). For instance, the amplification factors of the most unstable 
modes are respectively exp(0.2St) for the K-H instability, with S the shear rate, 
and exp(&St) for the elliptical flow instability, with S the additional strain rate, as 
shown by Waleffe (1989); the explosive character of the latter instability is illustrated 
by the experiment of Malkus & Waleffe (1991). 

The growth of three-dimensional disturbances is often linked to the loss of stability 
and subsequent breakdown of the large-scale structures. In particular, this was found 
to be the case for quasi-two-dimensional eddies in a rotating flow when the angular 
velocity of the eddies was of comparable magnitude and opposite in sense to that of 
the overall rotation (Bidokhti & Tritton 1992; MCtais et al. 1991). 

The discussions provoked by these results indicated an important difficulty concern- 
ing the distinction between the background flow, the large-scale structures and the 
turbulence. Some large eddies may appear as part of either the background flow or 
the disturbance to that flow, depending upon one’s choice of statistical or large-scale 
filter. The linear or nonlinear character of certain interactions as well as the turbulent 
kinetic energy budget and the definition of crucial Rossby numbers (macro or micro, 
global or local) could also be dependent on the chosen split. 

The aim of this paper is to attempt to resolve some of the above problems using 
simple idealized flows, rather than addressing more complex cases. We consider a flow 
in a rotating frame of reference and the main question addressed is the following: 
Given a large-scale structure of vorticity W containing fine-grained turbulence and 
a background angular velocity 52, is it possible to characterize the stability of the 
structure by a single non-dimensional parameter, such as 

4R2 252 
R = -  = -  

2R.W W ’  

the rotation number? Here, W = V x U is the vorticity, which is twice the 
instantaneous angular velocity of a fluid particle, and the flow is observed in the 
rotating frame. The flow U is assumed to be quasi-two-dimensional in planes 
perpendicular to the rotation vector R .  Thus W lies in the direction of R and 
has component W in that direction. A simple, but incorrect criterion for maximum 
destabilization has been suggested by some authors (Lesieur 1990). This states that 
the angular velocity of the frame should balance the local angular velocity of the 
structure under consideration; symbolically 

W + 252 = 0 ( or R = -1). (1.2) 

The suggested condition for maximum destabilization is easily seen to be incorrect : 
turbulence with zero absolute vorticity can be considered as subject to pure strain; 
however the principal axes of strain are continuously rotating, so that the time-averaged 
production of turbulent vorticity by vortex stretching is zero. This fact will be derived 
in 0 2 using Cauchy’s solution of the Helmholtz equation and is illustrated by the 
experiment of Gence & Mathieu (1979). In addition, the stability analysis of elliptical 
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flow in a rotating frame (Craik 1989), extensively rediscussed below, shows that the 
case of zero absolute vorticity is a unique case, that is unconditionally stable. 

It will be shown in this paper that the criterion for maximum instability is one of 
zero tilting vorticity 

The word tilting refers to the conventional distinction between vortex stretching and 
vortex tilting terms in the equation that governs the vorticity, and which are given in 
9 2. In the case of zero tilting vorticity, the background rotation balances only one 
half of the local angular velocity of the structure. This criterion is consistent with the 
results of Bradshaw (1969). This author studied the case of simple uniform shear in a 
rotating frame (for which the rotation number is R = -2Q/S with shear rate S ) ,  and 
on the grounds of an analogy between rotation curvature and density stratification, 
proposed that flow stability is governed by the Bradshaw-Richardson number 

B = R ( R +  l), 

which involves the product of the background angular velocity 8, and absolute 
vorticity 2 0  - S. According to Bradshaw, the flow is stable if B > 0 and, since the 
analysis is linearized, we find the forms 

exponential growth as for B < 0 (so-called unstable case), 
linear growth as for B = 0 (so-called neutral case), 
oscillating behaviour as for B > 0 (so-called stable case). 

The maximum growth rate is found for B = -$ (or R = -;) in agreement with 
the criterion (1.3) of zero tilting vorticity. It is important to note that, in addition to 
being inviscid (which we shall see is not a great restriction), Bradshaw’s analysis is 
limited in that it ultimately derives from a displaced particle approach, similar to 
Rayleigh’s (1916) derivation of his classic stability criterion for flows under rotation. 
Indeed, Bradshaw’s result is a special case of the Rayleigh criterion, as shown in 
Appendix A. 

The use of displaced particle arguments amounts to neglecting the pressure perturba- 
tion terms within linear stability theory and is an approximation. This approximation 
was, in effect, also used by Tritton (1992) who found the Bradshaw stability criterion 
by an argument of flow impulse. The fact that these analyses are two-dimensional 
and pressure-less is a weakness, but a true three-dimensional stability analysis of 
Pedley (1969) for a rotating pipe could support them partly. Speziale, Gatski & Mac 
Giolla Mhuiris (1990) and Jacquin, Salhi & Benoit (1992) have considered classical 
approximate turbulent Reynolds-stress models that also do not lead to the exact 
equations in the linear limit. It is interesting to observe that, in that limit, their results 
indicate a (moderately) different stability criterion from that of Bradshaw. 

Using what amounts to exact inviscid linear stability theory (but interpreted in 
terms of turbulent correlations in a rapid distortion theory - RDT - fashion), 
Bertoglio (1982) and Salhi (1992) have also found that the Bradshaw criterion is not 
fulfilled. However, they show that the criterion R = -; for maximum destabilization 
is respected. Their results are in agreement with those of Bardina, Ferziger & 
Reynolds (1983) using large-eddy simulation (LES). 

In the different context of mixing layers, the stability analysis of Yanase et al. (1992) 
and experimental results of Bidokhti & Tritton (1992) seem to confirm the criterion 
of zero tilting vorticity for maximum destabilization. Uncertainty remains, however, 
since the rotation numbers of these studies are obtained from an average shear across 

i W + 2 & 2 = 0  ( o r R = - i ) .  (1.3) 

exp [IB11/2 St]  
S t  

exp [i )B1’/2 St]  
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the layer, and not from the local vorticity of the large structures. The same remarks 
hold for experimental (Johnston, Halleen & Lezius 1972) and numerical (Andersson 
& Kristoffersen 1992; Kristoffersen & Andersson 1993) works in rotating channel 
flows. 

There appears then to be a reasonably convincing body of evidence that maximum 
destabilization is obtained for zero tilting vorticity and, as stated before, the case of 
zero absolute vorticity should lead to stability (Craik 1989). 

Direct numerical simulation (DNS) of mixing layers and wakes was carried out by 
MCtais et al. (1991), resulting in visualizations which were interpreted (Lesieur 1990) 
as showing that maximum destabilization occurs for zero absolute vorticity and that 
the Taylor-Proudman theorem gives the stability criterion for large enough rotation 
numbers. Although we believe this interpretation to be questionable, we consider 
that these results have provoked an interesting debate and, to a certain extent, have 
motivated the present study. 

The instability of elliptical flows with rotation was considered by Craik (1989) and 
is particularly relevant to the present study. Among other results, he found stability 
for zero absolute vorticity ( W + 282 = 0). In all other cases, the flow was unstable 
to some initial perturbation, but the instability was found to be particularly striking 
when the tilting vorticity is zero. These instabilities were found to be relatively weak 
when the elliptic vortex rotates in the same sense as the background rotation (R > 0), 
a case we will later refer to as cyclonic, after the conventional use in the geophysical 
community. Some of the results of Bradshaw’s ‘pressure-less’ stability analysis are 
thus reflected by exact linear stability theory of the rotating infinite elliptical eddy. 
Nonetheless, a single parameter, such as B, does not fully describe the stability 
problem, nor is Bradshaw’s criterion fully justified. 

In order to apply and extend these results to a large-scale structure in a rotating 
flow, exact stability analyses and large-eddy simulations have been undertaken and 
the results are described in this paper, which is organized as follows. 

Section 2 reviews the basic equations and shows how one can relate equivalent 
formulations in terms of velocity and vorticity. The roles of absolute and tilting 
vorticity are brought to the fore. 

In 6 3 we consider the stability of flows with a quadratic streamfunction. These 
flows are characterized by constant gradients of velocity and can be the background 
flows for homogeneous turbulence, according to Craya (1958). Cambon (1982) and 
Cambon, TeissZdre & Jeandel (1985, hereafter referred to as CTJ) have studied the 
stability of such flows and have provided subsequent RDT solutions for a wide range 
of the parameter 2D/W (where D, the strain rate, and W ,  the vorticity, define the 
velocity gradient matrix). The range studied included those of hyperbolic streamlines 
(strain dominated, 2D/W > l ) ,  linear streamlines (simple shear, 2D/W = 1 )  and 
elliptical streamlines (vorticity dominated, 2D/W c 1 ) .  The latter class has more 
recently attracted a lot of interest and several studies appeared in 1986 (those of 
Pierrehumbert, Bayly, Craik & Criminale). These studies will collectively be referred 
to as PBCC. Recent reviews can be found in E288 and Waleffe (1989, 1992). 

The limitation of quadratic flows is that they are infinite in extent and therefore 
are not a very realistic model of a finite vortical structure. We would like to consider 
flows which include rotational regions and also strain-dominated (or convergence) 
zones. 

In 9 4, a more realistic, but still idealized model flow is examined. The flow initially 
consists of a periodic lattice of two-dimensional Taylor-Green vortices in a rotating 
frame of reference with three-dimensional fine-scale turbulence superimposed. Half 
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of the vortices are cyclonic and half are anticyclonic. The evolution of the flow 
is calculated by large-eddy simulation. Note that the large-scale strain rate D and 
vorticity W vary throughout the flow. These parameters are constant for the quadratic 
flows of 0 3, but now the ratio 2D/W can vary from zero at the core of the eddy to 
infinity between eddies. A similar flow configuration was studied, both experimentally 
and numerically, by Michard et al. (1986) in the absence of background rotation. 

Finally, in 0 5, the effects of rotation on initially unstructured turbulence are briefly 
reviewed in the light of our results. 

2. Reviewing the basic equations 
The Euler and Helmholtz equations for an incompressible velocity field are written 

for velocity, pressure and vorticity ( U, P, W = V x U ), in a rotating frame. The 
equation for the total (mean plus fluctuation) absolute vorticity in the Galilean 
reference frame and its formal solution (found over a hundred years ago by Cauchy, 
Kelvin and Weber) is not very helpful, since the implicit effect of system rotation on 
the total strain ;( Ukj + Uj,i)  is not known. Hence, Zinearized equations in the rotating 
frame are discussed below. For convenience, each quantity is split into a background 
(mean) part and a perturbation (fluctuation) part, so that henceforth 

U +  U + u ;  P + P + p ;  w + w + o .  

hi + ~j Wij = Uij ~j + ui,j (Wj + 2 Szj), (2.1) 

where the superscript dot ( ’ ) in the first term on the left-hand side denotes the 
advective terms 

(.) = ( ) , t  + uj ( 1. j .  

The second term on the left-hand side is essential for inflexional instability (see 
Appendix B) but is not important for three-dimensional instabilities modified by 
rotation; hence it will be neglected at this stage, so that 

The linearized vorticity equation reads 

Wi,j - 4 (2.2) 

to be taken into account later in 0 4. 
The two terms on the right-hand side of (2.1) are the result of linearizing the basic 

vortex stretching term Ui,, ( W j  + 252,. ) , Assuming that the absolute vorticity has zero 
value, (2.1) has a simple Cauchy’s solution 

4 x 3  t )  = Fij(X, t ,  0) mj(X,  O),  (2.3) 

where X is the position at time t = 0 (the third argument of Fij in (2.3)) of a particle 
of the mean flow, which reaches the Eulerian position x at time t; Fij = axi/i?Xj is 
the conventional displacement gradient (Eringen 1967) defined by 

dxi = Uidt + FijdXj. (2.4) 

Following another conventional formalism, (2.1) has a slighty different form: 

(jJ. i - - U..O. 1.j j - eijl(wj + 2 Q j ) ~  + uj,i(Wj + 2Qj) 

or (using a more popular vector notation) 

D o  
- = o  VU - (W + 2Q) x w + V [ U * ( W  + 2n)] 
Dt 

(2 .5~ )  
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in accordance with (2.2) and u i j  = uj,i + eilj o1 . The corresponding linearized 
equation for u reads 

h.  = -u. 1.j . u .  j - 2 f i i j  01 uj - P,i . (2.5b) 

In order to reconcile the vorticity and velocity approaches and to derive a unique 
form of these equations, the background velocity gradient is split into symmetric 
(strain) and antisymmetric parts: 

Accordingly, (2.5~) and (2.5b) become 

Q = s 0 - (p + 252) x w + v [u . (W + 252)], ( 2 . 7 ~ )  

ir = --s * u - (;w + 252) x u - v p ,  (2.7b) 

where the 'tilting vorticity' term i W  + 252 is now displayed in both equations?. 
These equations (2.7a, b)  can be closed by solving two similar Poisson equations 

v 2 u = - v  x 0 ,  ( 2 . 8 ~ )  

v2 p = -2  sij sij + (Wl + 20i)Oi, (2.8b) 

In short, splitting the velocity gradient matrix into symmetric and skew-symetric 
parts exhibits the tilting vorticity as an explicit parameter for production of both 
enstrophy and energy. The absolute vorticity, however, is involved in Poisson equations 
associated with specific gradients terms. 

Returning to the case of pure shear flow, we see that for the zero-absolute-vorticity 
criterion R = -252/S = -1, (2.3) leads to linear (in S t )  amplification terms. On the 
other hand, the solution of 

Q = s a w  

obtained for R = -; (the Bradshaw criterion) when the pure gradient term is 
neglected in (2.7a), leads to exponential ( exp[St/2] ) amplification coefficients for the 
case of pure shear, where S stands for the shear rate. These results are easily extended 
to more general fields; the effects of 'production-redistribution' that correspond to 
explicit terms in ( 2 . 7 ~  or 2.7b) (and in the equations that govern ( U i u j )  or (oioj)) 

would induce maximum amplification when the tilting vorticity is zero. 
Accordingly, it is possible to rewrite the equations so as to lend support to a 

generalized 'pressure-less' Bradshaw criterion, but the above analysis is not conclusive 
since the gradient terms in (2.7a, b)  preclude finding an exact solution; a numerical 
procedure (which is described in 6 3) is required. 

with S i j  = $( Ui,j + uj,i) as in (2.6). 

t In fact, (2.70) is not exactly recovered when taking the Curl of (2.7b), because ( 2 . 7 ~ )  takes into 
account the criterion (2.2) whereas no such additional assumption is used in (2.7b) 
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3. Linear stability analysis of quadratic flows and RDT computations 
The purpose of this section is to obtain accurate solutions to the system (2.7) and 

(2.8) for disturbances to the simple basic flows initially considered by Craya (1958) 
and Lagnado, Phan-Thien & Leal (1984). 

A plane quadratic basic flow can be defined using the following streamfunction in 
the plane ( x I , x ~ ) :  

where D is the strain rate (or maximum stretching rate) and W the spanwise vorticity 
(or twice the local angular velocity). These flows can be seen to be a superimposition 
of a pure plane strain ( D )  and a solid-body rotation ( W/2), having the constant 
velocity gradients 

u.. = :D ) . (3.2) 

The latter expression is written in the principal axes of the associated pure strain, 
obtained after rotating an angle 7r/4 from the initial frame ( x l , x 2 ) .  Without lack 
of generality, D and W are chosen positive (W < 0 will be considered only in 
0 3.2 in order to recover the conventional case of pure shear: D = -W/2). The 
streamlines of the three cases are shown in figure 1. Stability analyses of these flows 
were done by CTJ and PBCC (for W / 2  > D ) .  Some analytic solutions were also 
given in particular cases by Lagnado et al. (1984). Complete numerical solutions, 
including the tabulation of the linear transfer matrix that generates the kernel, were 
used by CTJ to compute statistical correlations of the fluctuating field, such as is 
done in rapid distortion theory for homogeneous turbulence (Batchelor & Proudman 
1954; Townsend 1956). Note that no reference was given by PBCC to any statistical 
application, since they consider a single Fourier component of the disturbance field, 
so that nonlinear interactions are zero, and their solutions can be seen as exact. In 
other words, the assumption of weak disturbance which allows linearization of the 
equations for the total field (Ui + Ui + u i )  is not necessary if a single mode of ii 
(defined below) is considered. Nevertheless, the starting point is the same as in RDT 
and the different approaches can be reconciled (see E288 for more details on the 
underlying principles). 

Within the rotating frame ( Bi = Bdi3 ), the general method by CTJ is applied to 
solve the linearized problem with application to homogeneous solenoidal RDT. The 
fluctuating fields are expanded in terms of time-dependent Fourier modes exp[ i k ( t ) *x ] ,  
where k is given by 

-1 W ) or Ui,j = ( I” ( D + i W  O D - i W  0 
+;W 

k. - 1  - - - U . . k . *  j.1 j ,  ki = Fi’( t ,O)Kj ,  

and 

with ~ r , p  = 1,2, c2 = D 2 -  ( ; W )  ’ I  , 

(3.3) 

is the displacement gradient, as in (2.3) and (2.4). Capital and lower-case letters cor- 
respond respectively to Lagrangian (moving with the background field) and Eulerian 



182 C.  Cambon, J .  P. Benoit, L. Shao and L. Jacquin 

Strain-dominated flow (hyperbolic) Shear flow (linear) 

Vorticity-dominated flow (elliptical) 

FIGURE el 1. Streamlines of the background flows. 

variables, in accordance with (2.4) and a wave conservation law 

k - x  = K.X. 
The sign of a2 = -tV2P characterizes the class of the flow (where CT is either a real 
or a pure imaginary number), and provides a convenient link between some previous 
works (Craya 1958) and modern topological approaches (Chong, Perry & Cantwell 
1990). Note that the exact single mode of the disturbance field 

2(k, t) exp[ik(t)*x] 

is more complex, in general, than the classic wave-like disturbance 

A(k)  exp[i(k*x - C ( k )  t ) ]  

used in conventional hydrodynamic stability analysis (see Appendix B). The hat (A) 
denotes a three-dimensional Fourier transform. The solution is not sought using the 
three-component Fourier transform Gi(k, t), but instead the two solenoidal components 
@ I  and 432, obtained by projecting 2 on an orthonormal frame (el, e2, e3 = k / k )  
via the so-called Craya decomposition (see also Herring 1974): 

ii(k, t )  = $I (k, t)e'(k) + $2 (k, o a k )  9 ( 3.4a) 

G(k, t) = ik (431 (k, t)e2(k) - @2 (k, t)e'(k)) . (3.4b) 

Thus the incompressibility constraint (k . 2 = 0)  is satisfied, the pressure effects are 
implicitely accounted for, and the initial problem in four components (Zl,Z2,23,?) 
reduces to one in two components. The use of two solenoidal mode intensities ( fl and 
432 ) as dependent variables is more convenient than the use of two planar coordinates 
($1 and 22, after elimination of $3 = -(kliil + kzi&)/k3 and P), as used by PBCC. 
Analytical solutions are often simpler in the frame ( e1,e2) and furthermore the 
numerical computation is facilitated, because the actual linear solutions are expressed 
in coordinates that are more closely related to the eigenmodes. For instance, in the 
case of pure rotation, the helical mode intensities ($2 - i@1, @2 + i@l, i2 = -1) are 
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immediately recovered: they are the eigenmodes of the linear regime of inertial waves 
(Greenspan 1968; Cambon & Jacquin 1989; Waleffe 1992). 

Choosing the local (angular-dependent wavevector) frame (el, 2) so that e' is 
normal to a, (or el = (k x n)/lk x nl with ni = 8i3 ), i& and @2 are closely 
connected to the set ( 0 3 ,  V2u3 ) conventionally used for studying the stability of 
sheared flows in physical space (see Appendix B). It can easily be shown that 

(3.5b) 

with k = (kiki)'l2. 

the local frame (el ,  2 ), so that 
The linear equation (2.56) is three-dimensional Fourier transformed and used in 

$a(k, t )  + mafi(k)Gb(k, t )  = 0 ,  (3-6) 

with map = esUi,jtf - tY4 + 201 eilj e y 4 ,  The Greek indices take only values 1 
or 2, and the superscript dot (-) indicates a substantial time-derivative (as it does 
in physical space) at fixed K, as in (3.3). Because of the orthonormal properties 
(eqe; = aij ,  eq4 = 8 ,  ) it is found that 

so that the matrix 

kl 
e;ej) + ~ a b 3  ( w I  + 2 ~ 1 ) k  map = Sij(e74 - 

exhibits the projection of the absolute vorticity onto the wavevector, as the unique 
contribution from rotational terms: 

i 2cD + p( w + 252) 260 

where the strain-related angular-dependent coefficients are a = efei , b = 44 and 
c = eiei + e:ei . For more details, the reader is referred to CTJ and Benoit (1992) or, 
if not acquainted with the French language, to Cambon, Coleman & Mansour (1993). 

leads to $3 = 0, in agreement 
with (3.5) and, more generally, with the Cauchy solution in (2.3). Another interesting 
result is found for spanwise wavevectors (or kl = k2 = 0). In this case, the local frame 
(el,$ ) is not defined, and the fixed (planar) frame of reference is more convenient 
(as used also by Craik 1989) since 23 = 0 ; accordingly (GI, G2 ) are substituted into 
(@I,  &), and the rank-two matrix m reduces to 

(3.7) i k3 

k --( w + 2Q) 2aD 
ma8 = 

For zero absolute vorticity, equation (3.6) for 

) ,  ( D  (YW +2a) -D 

-(iW+2sz) 

recovering the tilting vorticity, consistent with the absence of pressure effects for these 
spanwise wavevectors. 
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The solution of (3.6) is characterized by a rank-two matrix & S ,  which has to be 

@ a W ,  t )  = g&, t ,  O ) @ s ( K  0) * (3.9) 

Solving (3.6) in the general case is intricate because k is time-dependent, as shown 
by (3.3). Hence, a numerical code is used to derive the matrix g generating the 
solution of (3.6) and the first equation of (3.3), using a fourth-order Runge-Kutta 
method. The solutions for the covariance matrices such as ( ui u j )  or (ai aj) are 
then derived, choosing particular initial data. Here an initial isotropy is assumed, 

h* h ..I h 

and the covariance matrices are integrated over the k-space in order to provide 
one-point velocity correlations, in agreement with conventional RDT (see Benoit 
1992, for details on the numerical method). We note that the solutions for statistical 
correlations only involve the evolution of the matrix g, which also gives the general 
solution of the linear stability problem (3.6). This matrix is close to the matrix denoted 
A by Townsend (1956) and to the Floquet matrix calculated by PBCC in the case of 
the elliptical flow instability. 

Curves for global quantities (such as the kinetic energy i q2  = :(uiui) or enstrophy 
4 (oioi) ) will be presented below. On the one hand, these curves can be interpreted 
as histories of one-point correlations, in the field of homogeneous solenoidal RDT 
applied to pre-existing isotropic turbulence. On the other hand, they can be solely 
considered as a norm (average over all wavevector directions) of the matrix g (with 
no statistical interpretation) since the same weight is given to each initial wavevector 
independently of its angular position. This can be seen from the fact that 

3.1. Hyperbolic (strain-dominated) flows 
For D > W / 2 ,  the streamfunction is hyperbolic and F (see (3.3)) involves real 
exponential terms, with 

112 
0 = (D’- (fw)’) . 

This case is considered here for the sake of completeness. The strong amplification 
shown in figure 2 ( a ,  b) for 2 0 / W  = 1.2 and several rotation numbers 2Q/W is 
probably not realistic, since nonlinearities and dissipation are very important in 
actual convergence zones (as stressed in E288 ). Nevertheless the relative position of 
the curves for different rotation numbers 2Q/W is believed to be physically correct. 

The results shown in figure 2 confirm that the maximum destabilization is found for 
R = -4. Amplification of kinetic energy is reduced for R = -1 with respect to the 
case without rotation. The case R = -1, however, can be considered as destabilizing 
with respect to a cyclonic case (R = 1). Nevertheless, all the cases are destabilizing 
when looking at the enstrophy amplification, as figure 2 ( b )  shows. 
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3.2. Linear (pure shear) jaws 
For D = - W / 2  = S / 2  (W < 0), the pure shear flow of rate S is recovered so that 

CJ = 0 and Fij = 6.. ' I  + U. v t 
are consistent limits of (3.3) in this case. The relative position of the kinetic energy 
history curves in figure 3 ( a )  is the same as in the previous case. 

Our numerical results for kinetic energy are in complete agreement with those of 
Bertoglio (1982) who solved the linear contribution to the equation for the velocity 
covariance matrix (the so-called Craya equation for double correlations); the link to 
the 'true' stability analysis, however, is lost in such an a priori statistical approach. 

The difference between the R = -4 and R = -1 cases is particularly important. 
It can be seen that both cases R = 0 (without rotation) and R = -1 (zero 
absolute vorticity) correspond to the so-called neutral case ( B  = 0)  if the Bradshaw- 
Richardson criterion is used. 

Amplification of kinetic energy is shown in figure 3 ( a )  for both cases, but this 
result is very dependent on the presence of viscous effects, as the figure 3 ( b )  histories 
illustrate. Viscous effects can be introduced in the present stability analysis, as shown 
by CTJ and Landman & Saffman (1987). 

In the particular case of pure shear, Lee, Kim & Moin (1990) have demonstrated 
that homogeneous RDT is applicable (they find near-wall turbulence structures at 
higher values of S t )  if viscous effects are accounted for. A first insight into the near- 
wall 'streaklike' structures can be obtained in pure inviscid homogeneous RDT when 
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FIGURE 3. Kinetic energy histories for pure shear inviscid case (a), viscous case (b) :  

2 

looking at the history of some 'two-dimensional energy components' ( u:L1l,l cc (St)2 
and UiL11.3 = constant, see Cambon 1990) where L11.1 is the streamwise integral 
length scale (related to the length of the streaklike structures) and Lll.3 the spanwise 
one (related to the spacing of the streaklike structures). Nevertheless, only oiscous 
RDT can predict the relative values of the vorticity components, and in particular the 
eventual dominance of 0: over uf. In addition the very definition of a spacing scale 
(v/S)'I2 is impossible without introducing the kinematic viscosity v. Of course the 
accurate value of the actual streak spacing cannot be captured by linearized theories 
(Waleffe 1990), but qualitative trends can. 

Hence, the results of figure 3(b )  may be physically relevant to a more general 
flow pattern (representing a local region of high shear rate in an actual flow). This 
case deserves more attention and will be studied further in a subsequent paper. For 
analytical study, the simplest form of the equations is obtained choosing n as the 
vertical direction (in the definition of e1,2), so that @1 and k@2 are linked to 0 2  and 
V2u2, respectively (see Appendix B). 

3.3. Elliptical (vorticity-dominated) flows 

For D < W / 2 ,  the elliptic eddy is recovered. Its periodic motion is charac- 
terized by the angular velocity SZo = (( W / 2 ) 2  - D 2 )  1'2, in accordance with c = 
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Instability mechanisms in the presence of this flow are of particular interest. This 
instability is often called broad-band (PBCC) when considering the wavevector mod- 
ulus of the disturbance. It is obvious that no lengthscale information is given in the 
linear problem without boundary effects. This is reflected by the fact that the Floquet 
matrix g depends only on the orientation of the wavevector (or cos 8 = k3/k ). 

Hence, the disturbance associated with the elliptical flow is characterized by a 
narrow-band instability domain with respect to cos 8. This parametric instability 
develops with exponential growth, although the basic matrices (F ,  m )  of the linear 
problem are time-periodic. The case of elliptical flow seems to be of prime importance 
regarding its implications for turbulence theory and modelling, as shown in the most 
recent studies of Waleffe (1989,1993). These studies include (in addition to the 
earlier works of Cambon 1982; CTJ; PBCC) applications to the elliptical eddy of 
finite size (height and diameter) and nonlinear analysis of the interactions between 
the background field and the two main unstable modes. Ideas for explaining a 
possible breakdown of the background field and the collapse of fundamental wavy 
disturbances were proposed, as was an elegant interpretation of the fundamental 
triadic interaction in turbulent flows. Some of these ideas were illustrated by the 
Malkus experiment (see Waleffe 1989; Malkus & Waleffe 1991): the elliptical flow 
is created inside a rotating cylinder (with the angular velocity QO ) and subjected to 
an additional weak strain by fixed rollers. With respect to the Malkus approach, 
the experimental and theoretical study by Benoit (1992), previously quoted, dealt 
with the case of pre-existing developed turbulence in the presence of the elliptical (or 
hyperbolic, or linear) flow (see also Leuchter, Benoit & Cambon 1992). 

Much of what follows in this subsection is to be found in the analysis of 
Craik (1989), but using the different notation and numerical method of the present 
paper. 

For the elliptical flow within a rotating frame, (3.3) is not modified (by the rotation 
of the frame), whereas the absolute vorticity (2Q + W ) replaces W in the matrix 
m in (3.7), except for spanwise wavevectors ( k l  = k2 = 0)  where the tilting vorticity 
( 252 + W ) is displayed. At vanishing D, the disturbances consist of helical modes 
of opposite polarity ( @ 2  - iEi&, E = f l  ) having the phase 

k * x + ~ ( 2 5 2 + W ) c 0 ~ 8  ; cosO=k3/k 

in agreement with the mathematical description of inertial waves (Greenspan 1968). 
Following an argument successfully used by Bayly (1986), Waleffe (1989) and Craik 

(1989), the instability develops if the period of the wavevector motion coincides with 
the period of inertial waves, such as 

(3.10) 

where cos 8 is chosen positive without loss of generality. 
are 

recovered, which is given by (3.10) at vanishing D. For this case, the rotation creates 
a shift of the instability peak (in cos8) and kills off the instability for zero absolute 
vorticity. Three situations can be discussed: 

Without rotation of the frame, the unstable oblique modes around cos8 = 
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FIGURE 5.  Geometry of the polar stereographic projection. 

(i) Zero absolute vorticity. Analytical time-periodic solutions for g correspond to 
a pure strain whose principal axes are continuously rotated. The matrix g is periodic 
so that the stability occurs for any initial disturbance. 

W < 1252 + WI < W . The unstable oblique 
modes are shifted towards spanwise wavevectors ( < I cos 81 6 1 ). The location on 
spanwise k holds for zero tilting vorticity (2Q + W = 0 )  at vanishing D. If k (for 
the most unstable modes) tends to be aligned with the rotation axis, the disturbances 
of both vorticity i3 and velocity 3 tend to be located in the plane of the mean strain, 
and the amplification is particularly important. 

(iii) Anticyclonic case (8 < 0) or cyclonic case (Q > 0) with ( 2 8  + W (  > W .  The 
unstable oblique modes are shifted towards transverse wavevectors ( 0 6 cos 8 < 5 ). 
For high rotation rates (cyclonic and anticyclonic), the unstable domain is close to 
the transverse wave-plane (k I $2) and the amplification is strongly reduced. Note 
that the instability band with R less than -1 has very much smaller growth rates 
than that with positive R. 

Except for the results at zero absolute vorticity, which are valid for arbitrary strain 
rates D, the above discussion is suggested by an analysis at weak D. Two ratios 
2D/W are chosen for the numerical study: the first (2D/W = 0.05) gives a weak 
ellipticity and the second (2D/W = 0.8) gives an aspect ratio of the eddy equal to 3. 
The latter value corresponds to the maximum amplification rate, as shown by Waleffe 
(1989). 

In accordance with a Floquet’s analysis, the stability problem amounts to determin- 
ing the maximum eigenvalue of g after a period T = 27c/Q0, or s = exp[aDT] . The 
instability occurs for a > 0 or g,,(k/k, T, 0) > 2, in accordance with g,p(k/k, 0,O) = 
6,b and det g(k, T, 0) = 1. Two types of visualization are presented. 

The first one (figure 4u-f) (plate 1) represent half a sphere of radius unity viewed 
both in perspective and in a polar stereographic projection (see figure 5 )  , with each 
point representing a wavevector direction. The surface is coloured according to the 
value of the non-dimensional Floquet parameter a (blue for the a = 0 stable zone, 
red for the most unstable case a - 1). The figures indicate that except for very 
small 2D/ W, the distribution of a is not axisymmetric, but is characterized by two 
planes of symmetry (kl = 0 and k2 = 0) where the width of the instability band 
(in terms of cosf3) is either largest or smallest. This distribution motivated figures 
6 and 7, diagrams with segments whose length is proportional to the width of the 
instability band (different values of R and fixed values of the ratio 2D/W, either for 
kl = 0 or k2 = 0, are shown). The (diamond) symbol indicates the location of the 

(ii) Anticyclonic case (s2 < 0) with 
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FIGURE 4. Non-dimensional Floquet parameter a: cyclonic background rotation R = 1 (a); 
no background rotation R = 0 (b); anticyclonic background rotation R = -i (c), R = -4 (4, 
R =-i (e), R = - 3 C f ) .  

CAMBON ET .a. (Facing p .  188) 
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FIGURE 1 1 .  1 s 0 - P ~  surfaces: initial structure of the turbulent field (a), structure obtained after 5 large- 
eddy turnover times with no rotation (b ) ,  zero absolute vorticity (c) and zero tilting 
vorticity (4 initially in the core of the anticyclonic eddies, zero tilting vorticity using a larger window 
for sampling iso-surfaces and including a planar cut without threshold (e). 

CAMBON ET AL. 
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FIGURE 6. Instability bandwidth versus rotation number for elliptical flows within a rotating frame, 
2D/W = 0.8, plane kl = 0 ( a )  , kz = 0 (b). 

maximum a. This second type of visualization was also used by Craik, but only for 
kl = 0; it represent an azimuthal cut of the three-dimensional diagrams shown above. 
The presentation used by Bayly (1986) - without basic rotation - corresponds to a 
plane rotated, with respect to kl = 0, by n/4 (k l  + k2 = 0) and is thus somewhat 
less typical. Of course, because of the periodic motion of the wave vector, different 
azimuthal planar cuts correspond to different initializations of the wavevector, as 
pointed out by Craik (1989), but visualizations as in figure 4(a-f) give additional 
'synoptic' information. This latter information is interesting from the point of view 
of a subsequent RDT calculation, where the contributions from all wavevectors are 
simultaneously taken into account. At weak ellipticity (20/ W = 0.05), the instability 
band is very thin and quasi-axisymmetric. Despite the high resolution of our angular 
mesh (5101 points equally distributed on half a radius-unity spherical shell) the 
instability peak is captured only for a few values of R (see figure 7) ,  but the location 
of the segments on the curve (dotted line) corresponding to (3.10) is recovered. 
The case of large ellipticity (2D/W = 0.8) is illustrated by both three-dimensional 
and two-dimensional diagrams. In accordance with the discussion following (3. lo), 
figure 4 ( b )  shows the reference case without rotation R = 0 ;  figure 4(a) shows a 
cyclonic case ( R  = 1) and figure 4 0  an anticyclonic case R = -3, which represent 
(252 + WI > W (shift towards equatorial plane); figure 4(c-e) represents the most 
unstable situation with a shift towards the polar zone (the completely stable case 
R = -1 is not given). 

7 FLM 278 
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FIGURE 7. Instability bandwidth versus rotation number for elliptical flows within a rotating frame, 

2D/ W = 0.05, plane kl = 0 (a) ,  k2 = 0 (b) .  

In addition to these stability diagrams, global quantities are shown. Figure 8 ( a )  
presents histories for four cases ( R  = 1; 0; -$; -1 ) mentioned above where the final 
time corresponds to one 271/Q0 period. The amplification of kinetic energy for the 
zero-tilting-vorticity case is very striking: the angular instability (near cos 8 = 1 ) 
is reflected even by the history of an angular-averaged quantity. The case of zero 
absolute vorticity is found to be stable, whereas an unquestionable instability is 
captured for the cyclonic (R = 1) case. Figure 8 ( b )  shows the damping of the 
instability for R = -1 in the viscous case. The vorticity histories are shown for the 
same conditions in figure 9. They present the same behaviour for the energy histories 
and the periodic evolution found for R = -1 (zero absolute vorticity) and therefore 
- since they agree with the exact solution for o at zero absolute vorticity (see (2.3) 
and (3.3)) - confirm the accuracy of our numerical method. 

4. Numerical simulation of rotating turbulence in the presence of initially 
two-dimensional Taylor-Green vortices 

The initial background field is an array of Taylor-Green vortices. This flow is 
two-dimensional, space-periodic (in L), and is an exact solution of the N-S equations 
with a self-similar viscous decay. The streamfunction Y (XI, x2) is 

X1 x2 sin 272 - sin 2x - 
L L 

WO 
2( L / 2 K ) 2  

Y =  
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F~CWRE 8. Kinetic energy histories for elliptic inviscid case (a), viscous case (b ) :  
0, R = - f ;  0, R = 0; +, R = -1; X, R = 1. 

It is proportional to the spanwise vorticity, whose maximum value is WO . From the 
velocity field 

the velocity gradient matrix is recovered 

(4.1) 

D - iW 

(+iW -D ) UiJ = 

with 
X1 x2 X l  x2 

W(x1,xz)  = Wosin2x-sin2n-. L L L L 
D(x1,xZ) = ~Wocos2n-cos2n-, 

Here D and W are the local strain rate and local vorticity. An 'elementary cell' is 
shown in figure 10(a, b) with ( - L / 2  c x1 c L / 2 ,  -L/2 c x2 < L/2). The spatial 
distribution of Y (or W) is shown in figure 10(a). The four counter-rotating (with 
respect to each other) eddies are illustrated; their boundaries (W = 0) are straight 
lines, so that four squares are exhibited. Figure 10(b) presents the parameter o2 = 
D2 - ( W / 2 ) 2  (also equal to -$V2P ) under the same conditions. The cell consists of 
diamond-shaped meshes and the straight lines characterize a local pure shear (o = 0). 

1-2 
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FIGURE 9. Enstrophy histories for elliptic inviscid case: symbols as in figure 8. 

The diamond at the centre of the cell is a strain-dominated zone (a2 > 0), while the 
four surrounding diamonds are vortex-dominated zones (with a2 < 0). If such a flow 
is set into solid-body rotation, no effect of the Coriolis force is found, in accordance 
with the geostrophic equilibrium that is valid in a strict two-dimensional limit. 
Hence, a three-dimensional turbulent field is initially superimposed on the array of 
Taylor-Green vortices, according to standard procedures for generating initially three- 
dimensional isotropic homogeneous turbulence. In order to have a fully nonlinear 
approach, the kinetic energy of the three-dimensional turbulent field is about 15% of 
the energy of the Taylor-Green vortices. The large-eddy simulation was carried out 
using a conventional pseudo-spectral code (in agreement with the periodic boundary 
conditions) with moderate resolution ( 323). A ‘Kraichnan-type’ (Kraichnan 1976) 
subgrid-scale model is chosen, with the constants given by Chollet & Lesieur (1981). 
This procedure yields correct simulations at large Reynolds number ( Re - lo5 based 
on the diameter of one of the large vortices) if we only consider the results for the 
largest scales and during early times, before internal scales become too large for the 
computational domain. 

Results are shown in figure 11 (a-e) (plate 2). Iso-vorticity surfaces are not very 
informative since it has been shown that the structure of the large Taylor-Green vor- 
tices is completely masked by the small-scale intense vorticity of the three-dimensional 
‘turbulent’ field. This again illustrates strongly nonlinear features. Thus, eddy struc- 
tures are visualized by iso-pressure surfaces, in accordance with modern approaches 
to topological flow structure (Chong et al. 1990). More precisely, nonlinear pressure 
terms are considered, in accordance with the general Poisson equation 

V ~ P  = 2~ wi - viJ u,,, or V’P = v 2 p L  + v 2 p N L ,  (4.2) 

where capital letters characterize the total field (without splitting into basic and 
fluctuating fields). If the total pressure field P = P L  + P N L  is considered, the 
structure of the four eddies at the initial time is not recovered if the rotation rate is 
chosen to coincide with half the core vorticity (angular velocity) of a Taylor-Green 
vortex. This result reflects only the fact that the total pressure field is sensitive to 
the absolute vorticity (according to (2.8)). It does not mean that the dynamics of 
vortex structures are governed by absolute vorticity (as is, for example, assumed by 
Lesieur 1990). Accordingly, only the term P N L  in (4.2) has been used in subsequent 
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(b), within an elementary cell. 

visualizations. The initial structure of the turbulent field is recovered using this 
method, as shown in figure 11 (a), and is the same for rotating or non-rotating cases. 
Three cases have been selected to show the eddy structures obtained after a few 
(five) turnover times (4xlWo). For reference, the case without rotation is shown 
in figure 11 (b) .  Oscillations in the spanwise direction are exhibited, implying that 
a destabilization (three-dimensionalization) of the initially organized field, through 
nonlinear interactions, is in progress. The case where the rotation rate exactly 
balances the angular velocity in the core of the anticyclonic Taylor-Green vortices 
is shown in figure 11 (c) (zero absolute vorticity). No important destabilization is 
found, especially with respect to the non-rotating case. Results obtained when the 
rotation rate balances half the angular velocity (zero tilting vorticity) are shown in 
figure 11 (d). The two anticyclonic eddies no longer appear in the figure, so that a 
complete breakdown is suspected. The two cyclonic eddies are still present, but their 
structure is somewhat ‘scrambled’. At later time, a merging of these cyclonic eddies 
is observed. Nevertheless, a refined analysis of the case shown in figure 11 (d), using 
several values of the visualization parameters, has shown that the iso-pressure surface 
completely disappears in the core of the anticyclonic eddies when the threshold value 
for sampling the iso-pressure surface is too high: only contributions with intense 
negative AP (pressure differential with respect to a neutral reference value) are 
shown in figure 11 (d) .  Using a less drastic window (top and bottom threshold values), 
the anticyclonic eddies are still present, but attenuated, as shown in figure 11 (e) .  In 
addition, a planar cut has been visualized: this plane is coloured with respect to 
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the iso-pressure colour-scale and shows that the initial diamond-shaped structure is 
preserved, with red convergence zones ( V2P < 0 and AP > 0 )  and blue vortex zones 
( V2P > 0 and LIP < 0), in spite of the strong attenuation of the negative pressure 
differential in the core of the large anticyclonic vortices. 

This simple numerical experiment warrants further investigation, but preliminary 
results are consistent with the criterion of zero tilting vorticity for maximum desta- 
bilization, even for a complex flow (inhomogeneous) including nonlinearities. Zero 
absolute vorticity is also shown to be associated with stabilizing effects. 

5. Revisiting effects of rotation on initially unstructured turbulence 
It is interesting to discuss to what extent the stability analyses presented above are 

relevant for a better physical understanding of fully developed initially unstructured 
turbulent flows subjected to rotation. The recent experiment by Jacquin (1987), 
Jacquin et al. (1990) has exhibited two transitional Rossby numbers Ro' and Ro2,  
that delimit three regimes for the rotating homogeneous turbulent flow. The Rossby 
number is the inverse of the rotation number, or Ro = W / 2 Q ,  but its physical 
relevance depends on the choice of the eflectiue W. Jacquin proposed W = w/L33,3 

as the best indicator, in the light of a rational interpretation of his experimental 
results, where w is a r.m.s. (along the rotation axis spanwise) velocity component, 
and L33.3 is the integral lengthscale associated with spanwise separation (along the 
axis of rotation) and spanwise velocity components. A macro Rossby number RoL 
is defined following this choice. A micro Rossby number RoA can be defined by 
choosing for W the r.m.s. enstrophy o, so that the Taylor microscale 1 is used 
instead (according to w - w / A ) .  The latter preliminary definitions being born in 
mind, the three regimes mentioned above are as follows: 

(i) For RoL > Ro' , the rotation is too small, and the turbulent flow is unaffected 
by the Coriolis force. 

(ii) For Ro2 < RoL < Ro' (intermediate range), rotation affects the initial isotropic 
structure of the flow. Integral lengthscales strongly depart from isotropic relationships. 
For a continuously decreasing Rossby number, RoL = Ro' is shown to characterize 
a sudden transition, at which the anisotropy (reflected primarily by the lengthscales) 
is triggered. 

(iii) For RoL < Ro', the anisotropy trends are no longer forced, the dissipation 
rate is strongly reduced. 

The values Ro' = 1 and Ro2 = 0.2 were found in the experimental approach. These 
results were predicted with an excellent agreement by a nonlinear theory of EDQNM 
(eddy-damped quasi-normal Markovian theory) type (Cambon 1982; Jacquin 1987; 
Cambon & Jacquin 1989). This statistical theory can be seen as a stochastic model 
for nonlinear interactions modified by inertial waves. Apart from the precise finding 
of the first transition ( RoL - 1 ), discussed further below, DNS up to 2563 (Mansour, 
Cambon & Speziale 1991a, b) have confirmed the existence of this intermediate range 
of Rossby numbers and have brought to light the second transition ( RoL = Ro'). 
In addition, EDQNM, DNS and experimental results have suggested a physical 
interpretation: RoL = Ro2 corresponds to a micro-Rossby number close to unity; in 
this case, the rotation is dominant with respect to the local vorticity of all scales up 
to the dissipation range. For RoL < Ro2 ( or RoA < 1 ), the nonlinear transfer terms 
are essentially shut off, due to the angular dispersivity of interacting inertial waves, so 
that a pure viscous decay is obtained. This interpretation has nothing to do with the 
Taylor-Proudman theorem, used (at vanishing Rossby numbers) to avoid the problem 
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of transition from three-dimensional to two-dimensional turbulence. Studies of linear 
and weakly nonlinear regimes including inertial waves and the geostrophic mode, a 
relevant regime at small Rossby numbers, have shown that the Taylor-Proudman 
theorem cannot predict the two-dimensionalization in homogeneous turbulence. As 
recalled by Mansour et al. (1991a), among other authors, the time derivative of the 
fluctuating vorticity remains of the same order of magnitude as B , so that a necessary 
condition for the Taylor-Proudman theorem to be valid is not fulfilled. This theorem 
is relevant only in the presence of geometric constraints (thin layers) or boundary 
effects, or external forcing with a given (large with respect to 0 - l )  timescale. In 
the same way, the anisotropic trends shown at intermediate Rossby numbers are 
close to a weak Taylor-Proudman reorganization, but they are mediated by nonlinear 
interactions. If the homogeneous turbulent field initially includes large-scale quasi- 
two-dimensional turbulence, as numerically studied by Dang & Roy (1985), these 
two-dimensional vortex structures are found to be stabilized at small Rossby number, 
but this stabilization is clearly due to the suppression of the nonlinear transfer terms. 
These transfer terms are less reduced at higher Rossby number ( Ro* > 1 ) and their 
anisotropic structure (confinement in particular angular-dependent zones in spectral 
space) underlies anisotropic trends observed in physical space at intermediate Rossby 
numbers (see also Waleffe 1993). Such explanations are consistent within all the 
works quoted in this section. 

The idea of a transition associated with a stability criterion seems at first glance to 
be supported by the numerical results of Bartello, Metais & Lesieur (1994), but the 
latter authors consider a micro-Rossby number ( R d  - 1) and invoke the heuristic 
criterion of Lesieur (1990). 

On the other hand, it is more convincingly suggested that the first transition 
RoL - 1 identified by Jacquin et al. (1990), could involve the instability condition 
at zero tilting vorticity. It is admitted that W - w / L  characterizes the vorticity 
in the core of large eddies, whereas W = w - w / A  characterizes the vorticity of 
dissipative structures inserted between the largest eddies. Accordingly, the magnitude 
of the intermediate range of Rossby numbers strongly depends on the ratio L/A and 
therefore, on the Reynolds number. A clear separation between the two transitions 
can be obtained only for sufficiently large Reynolds numbers, as already stressed 
by Jacquin et al. (1990). Hence new DNS ( or LES) are needed to fulfil these 
requirements (in terms of both Reynolds and Rossby numbers), thus allowing the 
first transition to be captured and interpreted. 

6. Conclusions 
The stability of two-dimensional organized structures imbedded in three-dimen- 

sional turbulence and subjected to rotation has been studied in this paper. The 
conventional Bradshaw-Richardson analogy and the review of the basic equations for 
both velocity and vorticity have suggested that a maximum destabilization occurred 
for zero tilting vorticity ( W + 2f2 = 0 or R = -$), whereas the case of zero 
absolute vorticity ( W + 2 0  = 0 or R = -1 ) is quite a stabilizing one. Exact stability 
analysis and large-eddy simulation of canonic flows were performed in order to check 
the applicability of such conjectures. First the case of planar mean flows which have 
quadratic streamfunctions and arbitrary rates of strain and vorticity is considered. 
For all situations (hyperbolic, linear and elliptical streamlines) the stability analysis, 
possibly extended towards a statistical RDT approach, confirms that the zero-tilting- 
vorticity condition gives the maximum destabilization. In addition, the case of zero 
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absolute vorticity is always found to be more stabilizing than the case without rotation. 
The difference between the two cases ( R = 0 and R = -1 ) is particularly striking for 
pure shear and the elliptical eddy in a rotating frame. The latter fact is not taken into 
account by the Bradshaw-Richardson criterion, since the two cases correspond to the 
same (zero) value of B,  according to a so-called neutral case. The most promising 
consequences of this analysis are expected for the case of the rotating elliptical eddy. 
It is hoped that the latter stability analysis could be applied to the study of the 
stability of rotating mixing layers, where large oval vortices (with an aspect ratio of 
2 or 3) are present. In this sense, our analysis conflicts with a heuristic argument 
presented by Lesieur (1990) in which maximum destabilization is assumed for zero- 
absolute-vorticity, whereas the Proudman-Taylor theorem is advocated for explaining 
the stabilization at high rotation rate. Our analysis shows, in agreement with the 
similar study by Craik (1989), that the zero-absolute-vorticity case corresponds to 
unconditional stabilization. Weak destabilization could occur at high rotation rates, 
but viscous effects are sufficient to eventually damp unstable modes. 

In order to examine a nonlinear approach to inhomogeneous turbulence, an array 
of Taylor-Green vortices is finally considered. The large-scale velocity gradient matrix 
of this flow has locally the same structure as the quadratic flow previously considered, 
but its parameters are continuously varying in space, so that strain-dominated zones 
are inserted between vortex-dominated zones. In contrast to the case of a rotating 
mixing layer, the initial large eddies are counter-rotating with respect to each other. 
The LES confirm the attenuation of the anticyclonic eddies for zero tilting vorticity, 
whereas the case of initially zero absolute vorticity in the core of the anticyclonic 
eddies is shown to be stabilizing. Finally, most of our results suggest that the 
maximum destabilization of vortex structures could be obtained from the equality 

aD(W + 252) = $w, (6.1) 

where W is the spanwise vorticity and ~ l g  depends on the additional straining 
process and/or on the wavevector of the disturbance (see for example (3.10)). The 
value aD = 1, for which the zero-tilting-vorticity case is recovered, seems to be a 
good approximation, valid for diverse situations investigated in this paper. Consistent 
arguments are given at the end of the paper by Yanase et al. (1992) who compared 
the orientation of the vortex tubes with the orientation of the principal axes of the 
additional strain matrix. 

The authors are indebted to Fabian Waleffe, Julian Scott and Gary Coleman for 
helpful discussions and assistance. A preliminary version of this paper appeared 
in a special volume dedicated to Professor Ambarish Ghosh on his sixtieth birthday 
(Some Applied Problems in Fluid Mechanics, edited by H.P. Mazumdar from the Indian 
Statistical Institute, Calcutta). 

Appendix A. The criteria of Bradshaw and Rayleigh 
Consider a two-dimensional velocity field (0, Ve, 0) in a cylindrical coordinate 

system (r, 8, z )  representing, for instance, a rectilinear vortex or swirl. Such flows 
possess an absolute vorticity given by 
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This vorticity can be split into the relative vorticity, 

avelr  W = r -  
ar 

and the entrainment vorticity 
Ve 252 = 2-. 
r 

Rayleigh‘s stability criterion states that the flow is stable with respect to axisymmetric 
perturbations if Qa is positive, that is if its angular momentum (or circulation) rV0 
increases monotonically. In its classical form, Rayleigh’s criterion reads 

for stability. Introducing 52 and W one finds that 

252(20 + W) > 0. 
Division by W2 leads to the Bradshaw (or Bradshaw-Richardson) criterion, 

B = R ( R + l )  > O  
with R=252/W.  

Using this decomposition, an analogy can be drawn between two-dimensional 
vortex or swirl flows and plane rotating shear flows (the shear rate of the cylindrical 
flow being -W). For instance, in a stable line vortex (e.g. a Lamb vortex), R 
and B go to infinity when r -P 0 (solid-body rotation); outside, when r --* m, 
one has R + -1 and B -, 0 (potential flow). The analogy with rotating shear is 
thus helpful in explaining the difficulties one encounters in correctly modelling the 
turbulent stresses in this flow when the ‘Richardson number’ B spans the whole 
range 0 < B < 00 (Jacquin et al. 1992). 

Finally, let us note that if maximum destabilization in a rotating shear flow occurred 
for zero absolute vorticity (that is for B = 0), as suggested by Lesieur (1990), this 
would lead to the unsatisfactory conclusion that the peripheral flow of a line vortex 
(its potential part) is unstable. 

Appendix B. Stability analysis for non-homogeneous shear flows 
The background shear flow in the rotating frame is given by 

Ui = U ( X ~ )  Sil. 

Starting from (2.1), (2.5b), (2.8~~) and (2.86), a system of two coupled equations for 
o = 0 2  and q = V2u2 is easily found: 

- + u”) 0 + 2 ( E  - 252) =o, 
(,at ax, 

d 2 u  au2 a. 
( k + U a x ,  

q - - -  + 252- =o. a )  dx; ax,  8x3 
If two-dimensional disturbances are considered, 
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the rotation 52 has no effect and the classical Kelvin-Helmholtz instabilities are 
recovered, with a maximum amplification for 
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d2U - 
- = 0. 
dxi 

For disturbances with a spanwise variability (which are sensitive to S Z ) ,  wave-like 
form (B2) is not convenient; a form without space and time separation must be 
accounted for: 

o = a(x2,kl,k3,t) exp[i(klxl + k 3 4 .  (B 3) 
This has been shown by Waleffe (1990), who used (B3) for studying the emergence 
and the stability of streaky structures in the non-rotating case ( a  = 0). 

Note that the presence of streaks along the streamwise (XI  ) direction and alternated 
along the spanwise ( x3 ) direction leads to the enhancing of the vertical vorticity o . 
This effect seems to be completely deleted in the case of zero absolute vorticity 
( dU/dx2 - 2 52 = 0 ) as shown by (B 1). 

Regarding q , it is possible to compare the wave-like form and the exact form used 
in 6 3. From $ = 0,  valid in the case of infinite pure constant shear without rotation, 

q = %KI,K2,K3) exp[iK ’ XI 

is derived. It can also be written 

q = W I , K ~ , K ~ ) ~ X P [ ~ ( K .  x - UlK~tl l  

according to the definition of moving coordinates 

X1 = x1 - x2Sr = x1 - Ult; X2 = x2; X 3  = x3. 

The wave-like form of the disturbance is recovered, but only for this particular case 
(no rotation, constant shear,for q and not 0). 
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